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Abstract

We present a method for constructing smooth n-direction fields
(line fields, cross fields, etc.) on surfaces that is an order of
magnitude faster than state-of-the-art methods, while still pro-
ducing fields of equal or better quality. Fields produced by the
method are globally optimal in the sense that they minimize a
simple, well-defined quadratic smoothness energy over all possi-
ble configurations of singularities (number, location, and index).
The method is fully automatic and can optionally produce fields
aligned with a given guidance field such as principal curvature
directions. Computationally the smoothest field is found via a
sparse eigenvalue problem involving a matrix similar to the cotan-
Laplacian. When a guidance field is present, finding the optimal
field amounts to solving a single linear system.
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1 Introduction

A direction field ϕ of degree n ∈ � associates a collection of n
evenly spaced unit tangent vectors to each point of a surface.
For instance, n = 1,2 and 4 correspond to direction, line, and
cross fields, respectively (Fig. 2). In general such fields must
have singularities, i.e., isolated points where the field fails to vary
smoothly.

At first glance, computing the smoothest n-direction field appears
to be a difficult combinatorial optimization problem for two rea-
sons. First, we must determine the optimal number, placement,
and indices of singularities. Second, we must identify directions
that differ in angle by integer multiples of 2π/n. For a fixed
configuration of singularities, Crane et al. [2010] demonstrate
that an optimal solution can be found by solving a pair of sparse
linear systems. In many situations, however, it is desirable to
place singularities automatically. Historically this task has been
formulated in terms of difficult nonconvex optimization problems
where little can be said about global optimality (Sec. 1.1). In
this paper we describe a simple quadratic smoothness energy
that easily admits a global minimum with respect to all possible
configurations of singularities. Fig. 1 shows one example.

Figure 1: Smoothest unit vector field on the Stanford bunny over
all possible configurations of singularities, computed by solving a
single eigenvector problem. Red and blue spheres indicate positive
and negative singularities, respectively. (471ms, |T |= 28k)

Our method has two key ingredients. First, we represent n-
direction fields by storing the nth power of a complex number at
each vertex, together with an arbitrary (but fixed) tangent basis
direction. Optimizing the smoothness of such a field does not
require period jumps or trigonometric functions as in previous
methods (Sec. 1.1). Second, we measure the smoothness of an
n-direction field using the ground state energy of an appropri-
ate Schrödinger operator. Unlike many methods, this formula-
tion does not require a nonconvex unit-norm constraint on each
vector, and is well-defined even for singular n-direction fields
(Sec. 3). In addition, we introduce a continuum of “geometry-
aware” smoothness energies that provide a tradeoff between the
straightness of field lines and the total number of singularities.
Finally, we allow a tradeoff between smoothness and alignment
with a guidance field, which in the case of principal curvature
alignment leads to a simple, automatic scheme without the need
for careful tuning of parameters.

Figure 2: Left to right: examples of n-direction fields for n = 1
(direction), n = 2 (line), and n = 4 (cross), near singularities of
index +1, + 1

2
, and + 1

4
, respectively.
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Figure 3: Smoothness energies involving integer variables are easy
to formulate but difficult to minimize. Left: solution produced
by the mixed-integer method of Bommes et al. [2009]. Center:
solution produced by our method with s = 0. Right: solution
produced by our method with s = 1. Both solutions are global
minimizers; the parameter s offers a tradeoff between smoothness
and number of singularities.

For triangle meshes our algorithm requires the setup of a matrix
similar to the cotan-Laplacian, but with complex instead of real
variables. To build this system we need a connection, i.e., a pre-
scription for mapping tangent vectors between tangent spaces,
expressed via unit complex numbers (rotations) associated with
edges. Finding an eigenvector corresponding to the smallest
eigenvalue of this matrix gives a global minimizer of the smooth-
ness energy. If alignment with a given field is desired, solving
a single linear system yields a global minimizer of a weighted
smoothness and alignment energy. An outline of these algorithms
is given at the end of Sec. 6.

Throughout we will distinguish between directions which have
unit length, and vectors which can have any length.

1.1 Related Work

Computation of smooth n-direction fields on surfaces, in partic-
ular the case n = 4, is an essential component in applications
ranging from nonphotorealistic rendering [Hertzmann and Zorin
2000] to texture synthesis [Lefebvre and Hoppe 2006], parame-
terization [Ray et al. 2006], and remeshing [Kälberer et al. 2007;
Bommes et al. 2009; Nieser et al. 2012], to name a few. In these
applications one is often interested in smooth fields which ap-
proximate directions of principal curvature, i.e., the most extreme
directions of bending. While it is relatively straightforward to
formulate energies which encode the desired effects, they are
typically nonconvex and often NP-hard to solve. Finding a simple
convex formulation that yields the globally smoothest n-direction
fields – in any well-defined sense – has so far eluded researchers
in this area.

A principal difficulty is the need to identify directions modulo
2π/n. One possible approach is to simply multiply angles by n.
For example, Hertzmann and Zorin [2000] work with 4-direction
fields and use an energy

E(φ) = −
�

i j∈E

cos
�

4(φi −φ j + θi j)
�

,

where angles φi specify directions at vertices and θi j is the angle
between neighboring tangent frames. A variant of this “cosine”
energy was later adopted by Kälberer et al. [2007]. Owing to non-
convexity, little can be said about optimality of solutions found
via local descent; moreover, results depend on initialization.

Figure 4: Dirichlet energy of a unit n-direction field is not a reliable
measure of quality, since under refinement the energy contributed
by a singularity grows without bound. Top: uniform tessellation
yields the expected result: antipodal singularities have lower energy
than the configuration on the right. Bottom: refining around
the poles increases the energy of the antipodal pair, reversing this
relationship. This phenomenon is a consequence of the smooth
formulation and is not fixed by, e.g., more accurate area weighting.

Another possibility is to use the representation vectors (ui , vi) :=
(cos(nφi), sin(nφi)) themselves as variables [Ray et al. 2006;
Palacios and Zhang 2007; Ray et al. 2009]. Now however an
additional unit constraint u2

i + v2
i = 1 enters, leading to an NP-

hard nonconvex problem [Ling et al. 2009]. In practice the
unit constraint is included as a penalty term or relaxed through
iterative renormalization. As before, little can be said about
global optimality.

A different route was taken by Ray et al. [2008] who work with
angles directly and use so-called period jumps pi j ∈ � to compare
angles across a given edge ei j , leading to a smoothness energy

E(φ, p) =
�

ei j∈E

�
φ j −φi + θi j +

2pi jπ

n

�2
, (1)

which is quadratic in φ and p. Since the period jumps are in-
teger variables, the feasible set of solutions is nonconvex. In
general, mixed-integer optimization problems are NP-hard and
a relaxation must be applied. Ray et al. apply a direct rounding
procedure after first treating the pi j as real valued, while Bommes
et al. [2009] use a greedy rounding procedure which tends to
produce solutions with lower energy. Again, global optimality of
the resulting solutions cannot be asserted.

In all these approaches the user need not provide locations for
the singularities (which must be present on surfaces of arbitrary
topology). If singularities are prescribed ahead of time, very
simple quadratic formulations are possible as demonstrated by
Fisher et al. [2007] for vector fields and by Crane et al. [2010]
for n-direction fields.

Our representation is perhaps closest to that of Kass and
Witkin [1987] who used squared complex numbers to extract
unoriented line fields (i.e., n = 2) from images. Palacios and
Zhang [2007] propose a similar idea for arbitrary n but use real
representation vectors (R cos(nφ),R sin(nφ)) and encode trans-
formations between tangent spaces via matrices. These represen-
tations are attractive, but neither work addresses the question of
finding optimally smooth fields on surfaces.
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2 n-Vector Fields on Surfaces

We begin with a description of our representation of n-vector
fields on surfaces in the continuous setting; in Sec. 6 we discuss
discretization on triangle meshes. Here and throughout ı denotes
the imaginary unit. We use | · | to denote the magnitude of a
complex number and “arg” to denote the angle it makes with the
real axis. Recall that a vector z ∈ � rotated by an angle θ ∈ �
can be expressed as eıθ z.

Real Planes and Complex Lines
Traditionally, a tangent space Tp M over a point
p of a surface M is viewed as a copy of the real
Euclidean plane �2. In this case, any tangent
vector can be expressed as a real linear combi-
nation of two basis vectors e1, e2, i.e., xe1+ ye2
for some pair of coefficients x , y ∈ �. A useful
alternative is to think of Tp M as a copy of the
complex numbers �, in which case any vector
can be written as a complex multiple of a single
basis vector e1. (For instance, any point in �
can be expressed as some complex number z
times the real unit vector 1.) In this sense, �

is a one-dimensional complex vector space, also known as the
complex line.

n-Vector Fields When viewed as a collection of complex lines,
the tangent bundle TM is referred to as a complex line bundle,
and a choice of unit basis vector Xp ∈ Tp M at each point p ∈ M
is called a basis section. The complex structure J represents a
90-degree rotation in each tangent space. For surfaces in �3, J is
induced by a quarter turn around the unit normal N , i.e., for any
tangent vector field Z we let (J Z)p := Np × Zp.

As suggested above, a vector field Z can be expressed as Z = zX
for some coefficient function z : M → � relative to a basis section
X . Likewise, any n-vector field ψ can be expressed as a collection
of complex functions

{eı2kπ/nz, k = 0, . . . , n− 1}

which describes n copies of Z , each rotated by some integer mul-
tiple of 2π/n. Alternatively, we can raise any of these functions
to the nth power yielding the single complex function

u := zn,

as depicted in Fig. 5. This function provides a concise repre-
sentation of an n-vector field via ψ = uX . Moreover if b = |u|
and φ = arg(u), we can then recover individual vector fields by
computing the nth roots

{b1/neı(φ/n+2kπ/n), k = 0, . . . , n− 1}.

Note that these functions carry meaning only with respect to the
chosen basis section. In particular, we cannot treat them as or-
dinary scalar functions, but instead have to consider parallel
transport, as discussed below. Formally, an n-vector field is a
section of the nth order tensor product L := TM⊗n and the basis
section X is naturally identified with a basis section of L.

Parallel Transport The main benefit of this representation is
that, at least within a given tangent space Tp M , we can measure
the difference between two n-vectors via the simple quadratic ex-
pression |u1(p)−u2(p)|2. When comparing vectors from different
tangent spaces, however, we must be more careful – in particular,

Figure 5: We represent tangent vectors as complex numbers; di-
rections that differ in angle by some multiple of 2π/n become
indistinguishable when raised to the nth power.

we must first map both vectors into a common tangent space via
parallel transport. More explicitly, let Xp and Xq be basis vectors
for the two tangent spaces Tp M and Tq M , respectively, and let γ
be a geodesic from p to q, as depicted in Fig. 6. If θp,θq are the
angles made by γ with the two basis vectors and θpq := θq−θp is
the difference between these angles, then the parallel transport
map Ppq : Tp M → Tq M is given by

Ppq(zpXp) := eıθpq zpXq. (2)

In other words, the coefficient zp with respect to Xp gets mapped
to the coefficient eıθpq zp with respect to Xq. Geometrically, the
parallel transport map translates vectors from one tangent space
to another without any in-plane rotation (Levi-Civita). The dif-
ference between two vectors is then defined as

|eıθpq zp − zq|2,

and more generally we can write the difference between two
n-vectors as

|(eıθpq zp)n − zn
q |2 = |eınθpq zn

p − zn
q |2 = |rpqup − uq|2, (3)

where for convenience we define the angle

ρpq := nθpq (4)

and the corresponding transport coefficient

rpq := eıρpq .

Importantly, Eq. (3) remains quadratic in z since the coefficient
r is constant, depending only on the geometry of M , the choice
of basis section X , and the degree n of the field. Note that
by introducing the Levi-Civita connection, we also introduce a
dependence on the Riemannian metric.

Figure 6: To transport a vector from one tangent space to another
it is sufficient to measure the angle it makes against a geodesic
connecting the two tangent spaces.
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3 Smooth n-Direction Fields

We now focus on n-direction fields, i.e., unit n-vector fields. The
smoothness of a function is often measured via its Dirichlet energy;
this energy can also be used for n-vector fields ψ= uX :

ED(ψ) := 1
2

�

M

|∇ψ|2dA. (5)

Here ∇ denotes the covariant derivative, i.e., the Levi-Civita con-
nection on M . For n-direction fields there are two main problems
with this measure of smoothness. First, we must enforce the
pointwise constraint |u| = 1, resulting in hard optimization prob-
lems as discussed in Sec. 1.1. Second, the Dirichlet energy of
a singular n-direction field is not in general well-defined. In
particular, consider that any vector field Z can be expressed as
the product of a unit vector field Z̃ and a real nonnegative scale
factor a, i.e., Z = aZ̃ . Since the change in a unit vector field is
orthogonal to the field itself, we get∇Z = (∇a)Z̃+aωJ Z̃ , where
ω is the rotation speed of Z . The Dirichlet energy of Z is then

1
2

�

M

|∇Z |2dA= 1
2

�

M

|∇a|2 + a2|ω|2dA= 1
2
〈〈(∆+ |ω|2)a, a〉〉

where ∆ is the positive semidefinite Laplace-Beltrami operator
on M and 〈〈., .〉〉 denotes the L2 inner product. For a direction
field the scale factor is a ≡ 1, hence the Dirichlet energy is
simply
�

M
|ω|2. The rotation speed ω at a distance r from a

singularity is proportional to 1/r (as r → 0) since the total angle
of rotation 2kπ is divided by the circumference 2πr for a circle
of radius r. Consequently, the Dirichlet energy of a direction field
with singularities is undefined (infinite).

On a mesh, Dirichlet energy is finite but blows up under re-
finement. For instance, even if we add area weights to the en-
ergy E(φ, p) (Eq. (1)), refinement around singularities increases
energy so much that visibly inferior solutions yield lower en-
ergy (Fig. 4). This observation motivates a different treatment
of smoothness. In particular, we define the energy Ê of an n-
direction field ϕ as the lowest Dirichlet energy among all n-vector
fields ψ = aϕ parallel to ϕ. In other words, to evaluate the en-
ergy of a fixed unit field ϕ we look for an optimal scaling a ≥ 0:

Ê(ϕ) := min
a≥0,�a�=1

�

M

|∇(aϕ)|2dA, (6)

where the constraint ||a||= 1 prevents the trivial solution a ≡ 0.

Figure 7: Our algorithm can produce fields of any degree – here n =
3 (left) and n= 5 (right) using the holomorphic energy (Sec. 4).

Figure 8: Smoothest direction fields for varying n, as measured by
the holomorphic energy. For higher n singularities arise in groups,
as if splitting from those for smaller n. (382ms, |T |= 25k)

At first glance this energy seems ill-defined, since the poten-
tial |ω|2 is unbounded for singular n-direction fields. However,
minimizing the quadratic form 〈〈(∆+ |ω|2)a, a〉〉 over unit-norm
functions a is equivalent to solving the eigenvalue problem

(∆+ |ω|2)a = λa

for the smallest eigenvalue λ and corresponding eigenfunction
a. In physics, this equation is known as a time-independent
Schrödinger equation, where the scalar function |ω|2 can be inter-
preted as the potential energy of a particle moving on the surface.
The eigenfunction a with smallest eigenvalue is equivalent to
the wave function of a free particle with lowest energy, which is
always well-defined. From here, the globally optimal n-direction
field is obtained by minimizing Ê(ϕ) over all unit fields ϕ:

min
|ϕ|=1

Ê(ϕ) = min
|ϕ|=1

�
min

a≥0,�a�=1

�

M

|∇(aϕ)|2dA

�
.

But since the set of rescaled n-direction fields is no different from
the set of all n-vector fields, we can instead solve

min
||ψ||=1

�

M

|∇ψ|2dA,

which amounts to a smallest eigenvalue problem ∆ψ = λψ,
and recover the solution to our original problem via a ← |ψ|,
ϕ ← ψ/a. In the end, we obtain a smoothest n-direction field
(among all possible configurations of singularities) via a surpris-
ingly simple procedure: find the smoothest n-vector field and
normalize the resulting vectors. The physical interpretation of
Ê(ϕ) also provides some insight into why the globally smoothest
n-direction field has a small (though not necessarily minimal)
number of singularities: adding too many poles to ω increases
the potential energy |ω|2, hence it also increases the ground-
state energy of the corresponding wave function. We emphasize,
however, that we never explicitly build the Schrödinger operator
∆ + |ω|2 or minimize the energy Ê – these objects are intro-
duced simply to analyze the intermediate variational problem.
In practice we need only build the Laplacian ∆ used in the final
eigenvalue problem.

Fig. 8 visualizes the fields we obtain by varying n on the same
shape; Fig. 7 shows more exotic examples.
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4 Quadratic Smoothness Energies

The most commonly used smoothness energy is the Dirichlet
energy ED. However, we can obtain a richer family of energies
by orthogonally splitting the covariant derivative into a sum of
Cauchy-Riemann derivatives, i.e., ∇ψ= ∂̄ ψ+ ∂ψ where

∂̄Zψ := 1
2

�∇Zψ+ J∇J Zψ
�

, ∂Zψ := 1
2

�∇Zψ− J∇J Zψ
�

,

and Z is an arbitrary vector field (see [Wirtinger 1927] and
[Ahlfors 1966, p. 27]). We call an n-vector field holomor-
phic if ∂̄Zψ = 0 for all vector fields Z , and anti-holomorphic if
∂Zψ = 0 [Napier and Ramachandran 2011, Ch. 2.4]. These defi-
nitions mirror the standard notion that a function f : �→ � is
holomorphic (i.e., angle- and orientation-preserving) if it satisfies
the Cauchy-Riemann equation 0= ∂̄ f = 1

2
( ∂
∂ x
+ ı ∂

∂ y
) f = 0.

Using the orthogonal splitting described above, the Dirichlet en-
ergy decomposes into holomorphic and anti-holomorphic terms
EH and EA, respectively:

ED(ψ) = EH(ψ) + EA(ψ) := 1
2

�

M

|∂̄ ψ|2dA+ 1
2

�

M

|∂ψ|2dA.

We therefore define our smoothness energy as

Es := (1+ s)EH + (1− s)EA = ED − s(EA− EH), (7)

providing a continuum from anti-holomorphic (s = −1) to Dirich-
let (s = 0) to holomorphic (s = 1) energy. Equivalently, the
parameter s controls the deviation of Es from the standard Dirich-
let energy by the difference

EA(ψ)− EH(ψ) =
1
2

�

M

nK |ψ|2dA− 1
2

�

∂M

Im〈∇ψ,ψ〉,

where K denotes Gaussian curvature (App. C). The potential in
the Schrödinger operator now becomes |ω|2 − s

2
nK , biasing sin-

gularities towards areas of high (s < 0) or low (s > 0) Gaussian
curvature – this is the sense in which our smoothness energy is
“geometry aware.” More precisely, direction fields obtained for
s = ±1 depend only on the conformal structure; for all other s,
results depend on the metric. As shown in Fig. 9, the parameter
s provides a useful tradeoff between number of singularities and
“straightness” (i.e., geodesic curvature) of integral curves.

Figure 9: When seeking a smooth vector field, one often faces a
choice: fewer singularities, or straighter field lines? Our method
offers a tradeoff between the two, determined by a continuously
varying parameter s. As seen above, s = 1 (holomorphic energy)
typically yields fewer singularities, whereas s = 0 (Dirichlet energy)
gives straighter lines; s = −1 (anti-holomorphic energy) provides a
compromise between the two. (405ms, |T |= 25k)

Equation to Solve Let A be the positive semidefinite quadratic
form given by Es(ψ) =

1
2
〈〈Aψ,ψ〉〉. We find a global minimizer ψ

of Es among fields with unit norm by solving the problem

Aψ= λψ (8)

for the smallest eigenvalue λ ∈ �.

Discussion The solution ψ to Eq. (8) is unique up to a complex
constant with unit norm – this constant determines the global
“phase,” i.e., it rotates every tangent vector by the same angle.
In the case where λ is a repeated eigenvalue we obtain one of
many possible solutions; note that all such solutions are global
minimizers of our smoothness energy. Alignment constraints
(Sec. 5) can be used to specify additional criteria.

A 1-vector field Y on M is anti-holomorphic if and only if the
associated real-valued 1-form X �→ 〈Y, X 〉 is harmonic, where
〈·, ·〉 denotes the Riemannian metric. Likewise, since vector fields
on any open set U ⊂ � can be naturally identified with complex
functions, we can say that Y is holomorphic whenever it can be
expressed as a holomorphic function in each local coordinate
chart. These relationships help us make the connection with
existing methods from computer graphics. For instance, holo-
morphic 1-forms (corresponding to anti-holomorphic 1-vector
fields) appear in [Gu and Yau 2003] in the context of parame-
terization, while the holomorphic energy for functions was first
used in the context of parameterization by Lévy et al. [2002]
and Desbrun et al. [2002], where it was referred to as the con-
formal energy. Anti-holomorphic energy was used by Fisher
et al. [2007] in a DEC [Desbrun et al. 2008] context to find
smoothest 1-vector fields as minimizers of the Hodge-Laplacian
1
2

�
M
|∇× Z |2 + |∇· Z |2 =

�
M
|∂ Z |2 = 2EA(Z). The holomorphic

energy of 1-vector fields also appeared in the work of Ben-Chen
et al. [2010, Eq. 8], where the Killing energy of a 1-vector field is
defined as EK(Z) = 4

�
M

1
2
|∇· Z |2+ |∂̄ Z |2, encoding the fact that

a Killing 1-vector field is both holomorphic and divergence free.

5 Alignment Energies

It is often desirable to balance smoothness and alignment with a
given field φ. Alignment is accomplished via the functional

El(ψ) =
�

M

Re
�〈φ,ψ〉� dA= Re

�〈〈φ,ψ〉〉� .

where φ is normalized so that ||φ||= 1. We then let

Es,t(ψ) := (1− t)Es(ψ)− tEl(ψ) (9)

where t ∈ [0, 1] controls the strength of alignment. Just as before
we minimize Es,t over all fields ψ with �ψ� = 1. The pointwise
magnitude |φ| determines the local weighting between alignment
and smoothness terms. For example, setting φ = 0 on regions
with missing or unreliable information will smoothly interpolate
data from regions where |φ|> 0.

Equation to Solve Let A be the quadratic form corresponding
to Es,t . We find the global minimizer of Es,t by solving

(A−λt I) �ψ= φ, (10)

and normalizing the result, i.e., ψ← �ψ/� �ψ� (App. A). Letting
λ1 be the smallest eigenvalue of A, the parameter λt ∈ (−∞,λ1)
controls the tradeoff between alignment (λt → −∞ for t → 1)
and smoothness (λt → λ1 for t → 0), as illustrated in Fig. 10.
See Appendix A for further discussion.
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Figure 10: Adding an alignment term, we can interpolate between a
curvature aligned field (upper left) and a smooth field (lower right).
Here s = 0 and λ1 is the smallest eigenvalue; we use principal
curvature as a guidance field. (498ms, |T |= 65k)

6 Computation on Triangle Meshes

So far we have described our approach in the smooth setting. In
this section we collect all details needed for numerical compu-
tation on triangle meshes, which are based on a finite element
discretization using piecewise linear (PL) basis sections.

Triangle Meshes We assume that our input is an oriented 2-
manifold triangle mesh of arbitrary topology with or without
boundary. We use V , E, and T to denote the set of vertices vi ,
edges ei j and triangles ti jk, respectively. Vertices have coordi-
nates pi ∈ �3, with the rest of the surface defined via linear
interpolation.

Vertex Tangent Spaces and Parallel Transport Each vertex vi
carries a unit basis vector Xi (for convenience we use one of the
incident edge directions) and a coefficient ui ∈ � representing
the associated n-vector with respect to this basis. To measure
angles in tangent spaces, we rescale Euclidean angles at each
vertex to sum to 2π [Polthier and Schmies 1998; Zhang et al.
2006]. This rescaling effectively “flattens” the vertices, pushing
their curvature into the incident triangles ti jk � i. Let

si :=
2π
�

ti jk�i α
jk
i

, (11)

where α jk
i denotes the Euclidean angle at vi in ti jk, opposite ejk.

(On the boundary, si := 1.) For parallel transport from vi to vj let

ρi j = n
�
θ j(X j , ei j)− θi(Xi , ei j)

�
(12)

(cf. Eq. (4)), with θi(Xi , ei j) denoting the rescaled Euclidean angle
from Xi to ei j in Ti M (and similarly for θ j). Each oriented edge
of the mesh is assigned the transport coefficient ri j = eıρi j , which
is needed for matrix assembly.

Curvature Transporting an n-vector around the boundary of
ti jk computes the holonomy Ωi jk ∈ (−π,π], which represents the
curvature of our line bundle L over ti jk:

eıΩi jk := ri j r jk rki . (13)

For each triangle we compute this value as Ωi jk = arg(ri j r jk rki),
which is needed for matrix assembly (Sec. 6.1.1). Note that this
definition implicitly assumes that curvature is constant in each
triangle, and thus proportional to area – conceptually

Ωi jk =
�

ti jk

nKdA= nKi jk|ti jk| (14)

where |ti jk| and Ki jk are the area and Gaussian curvature in
triangle ti jk.

PL Finite Elements For purposes of the finite element method
the unit basis vectors at vertices are parallel transported into
the incident triangles and attenuated linearly with the standard
hat function. This gives PL basis sections Ψi supported on the
triangles ti jk incident to vi .

From now on all fields ψ are piecewise linear, given as complex
linear combinations of basis sections (App. D.1)

ψ=
�

vi∈V

uiΨi ,

with u now denoting the length |V | vector of coefficients of ψ.

6.1 Algorithms

Smoothest Field The continuous problem of Eq. (8) turns into
the generalized matrix eigenvector problem

Au= λMu. (15)

Here A is now a |V | × |V | Hermitian matrix representing the
energy Es with respect to the PL basis sections Ψi

Ai j = 〈〈AΨi ,Ψ j〉〉,

while M is the Hermitian mass matrix

Mi j = 〈〈Ψi ,Ψ j〉〉.

Since we care about an eigenvector belonging to the smallest
eigenvalue, we use an inverse power iteration to solve Eq. (15) –
see Sec. 7 for further details.

Aligned Field The continuous problem of Eq. (10) turns into
the matrix problem

(A−λt M)ũ= Mq, (16)

with A and M as above, while q is the coefficient vector for the
PL version of the guidance field φ. The unit vector u minimizing
the discretized version of Es,t is given by u = ũ/�ũ� for t =
(1+ �ũ�)−1. While λt depends on t monotonically, we have no
closed form expression for the relationship. In practice we find
that λt = 0 is often a good (starting) value. To solve this problem
we use Cholesky factorization followed by back substitution.
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6.1.1 Matrix Entries

Because the entries of A and M are given as integrals we can
assemble them via a loop over all triangles, i.e., a sum of integrals
over ti jk. The entries of these local 3×3 matrices can be computed
in closed form (see App. D for their derivation). Writing 〈〈., .〉〉i jk
the subscript reflects the integration over ti jk only. Assembly into
the global matrices through summation is assumed.

Mass Matrix On triangle ti jk the local mass matrix induced by
the L2 inner product is given by (App. D.2)

Mii = 〈〈Ψi ,Ψi〉〉i jk =
1
6
|ti jk|

Mjk = 〈〈Ψ j ,Ψk〉〉i jk = r̄ jk|ti jk|
6eıΩi jk−6−6ıΩi jk+3Ω2

i jk+ıΩ3
i jk

3Ω4
i jk

. (17)

The right hand side fraction has a removable singularity in the
limit of no curvature (Ωi jk → 0) where it takes on the value 1/12
as expected.

Energy Matrix We begin with the Laplacian, i.e., the Dirichlet
energy terms (App. D.3)

∆ii = 〈〈∇Ψi ,∇Ψi〉〉i jk =
1

4|ti jk |

�
|pjk|2 +Ω2

i jk
|pi j |2+〈pi j ,pik〉+|pki |2

90

�

∆ jk = 〈〈∇Ψ j ,∇Ψk〉〉i jk

= r̄ jk

|ti jk |

�
(|pi j |2 + |pki |2) f1(Ωi jk) + 〈pi j , pik〉 f2(Ωi jk)

�
,

where pi j := pj − pi is the edge vector along ei j and

f1(s) := 1
s4

�
3+ ıs+ s4

24
− ıs5

60
+ (−3+ 2ıs+ s2

2
)eıs
�

f2(s) := 1
s4

�
4+ ıs− ıs3

6
− s4

12
+ ıs5

30
+ (−4+ 3ıs+ s2)eıs

�
.

As before the singularities in f1 and f2 are removable and

〈〈∇Ψ j ,∇Ψk〉〉i jk →−
r̄ jk〈pi j ,pik〉

4|ti jk |
=−r̄ jk

1
2

cotα jk
i for Ωi jk → 0,

recovering the standard cotan-Laplacian in the flat setting [Mac-
Neal 1949].

With this, the per triangle energy matrix as a function of the
parameter s ∈ [−1, 1] follows as (App. D.4)

Aii =∆ii − s
Ωi jk

|ti jk |
Mii

Ajk =∆ jk − s
�
Ωi jk

|ti jk |
Mjk − ε jk

ır̄ jk

2

�
, (18)

where ε jk = ±1 according to the orientation (positive or nega-
tive) of ejk with respect to ti jk.

Boundaries Assembling the energy matrix triangle by triangle
we automatically account for the boundary of the mesh (Fig. 11).
In the case of the Dirichlet energy (s = 0) this amounts to zero
Neumann conditions, while for s �= 0 we have the boundary terms
due to EA− EH (App. C).

Numerical Evaluation The expressions given above for the off-
diagonal entries of the mass and Dirichlet matrices have remov-
able singularities as Ωi jk → 0. To avoid numerical difficulties and
ensure efficient, reliable, and accurate (to machine precision)

Figure 11: Assembly of local matrices per triangle into the global
matrix automatically accounts for boundary conditions. Here an
example using the anti-holomorphic energy and curvature align-
ment (λ = 0) to the minimum (left; n = 2) and both (right; n = 4)
principal curvature directions. (976ms, |T |= 106k)

evaluation of these expressions, we employ Chebyshev expan-
sions [Gil et al. 2007]. Due to the equiripple property of Cheby-
shev polynomials, these can guarantee an error on the order of
the least significant bit in double precision over an entire inter-
val. Since the expressions for Mjk and ∆ jk are only evaluated for
Ωi jk ∈ (−π,π] and due to the symmetry resp. anti-symmetry of
their real resp. imaginary parts, it is sufficient to find Chebyshev
expansions for arguments in [0,π]. We computed these expan-
sions with the aid of Mathematica and include ready to use code
in the .

6.1.2 Curvature Alignment

An important practical example for the alignment energy Es,t ,
seeks to compute smoothed versions of curvature lines (n = 2)
and crosses (n= 4). In this case the alignment field

φ =
�

vi∈V

qiΨi

is a PL approximation of the Hopf differential, i.e., the trace-
free part of the shape operator. In the discrete setting it is only
accessible as a distribution φδ concentrated along edges [Cohen-
Steiner and Morvan 2003]. Pairing it with our basis sections Ψi
we compute coefficients (App. D.5)

q̃i =
�

ti jk�i

φδΨi dA= − 1
4

�

e�i

rieβe|pe|,

where βe denotes the dihedral angle at e and the transport co-
efficients rie = eı2θi (Xi ,e) depend on the rescaled Euclidean angle
between Xi and e. The coefficients q of φ are the solution of

Mq = q̃.

Note that |q| is proportional to the squared difference of princi-
pal curvatures (κ1 − κ2)2. In umbilic regions, where principal
directions are ill-defined, smoothness is therefore automatically
favored over alignment (at least for t < 1 – see Eq. (9)).
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An example of this behavior
is demonstrated in the inset
image, where q is extremely
noisy due to irregular tessel-
lation. Due to the smoothing
term we still obtain good re-
sults, reliably producing prin-
cipal curvature directions and
the four expected umbilics. In
this example we used −q to align with minimum curvature di-
rections; for 4-direction fields we can use q2

i . Fig. 10 shows an
example of the global trade off between smoothness and align-
ment and how it controls spurious singularities. Several results
in Fig. 12 demonstrate further examples of alignment.

6.1.3 Index Computation

Given an n-direction field ψ we want to label each triangle t
by an integer indextψ (an index of ±1 indicating the presence
of a singularity). Let ψ be given by complex numbers ui of
norm one for each vertex. Then for each edge ei j we define the
rotation angle of ψ as the unique number ωi j ∈ (−π,π) such
that uj = eıωi j ri jui , and define

indextψ := 1
2π
(ωi j +ω jk +ωki +Ωi jk) ∈ { −1,0, 1}. (19)

See App. B for more details on this definition and a proof of the
associated discrete Poincaré-Hopf theorem. Singularities of index
+1 and −1 are plotted as red and blue spheres, respectively, in
all images.

Figure 12: A gallery of examples. The bunny with a 4-direction
field aligned (λ = 0) with (q2

i ) using s = 1. The two-holed torus
aligning with (q2

i ) using s = −1. The frog shows a smoothest
(s = 1) 4-direction field. The Elephant uses s = −1 and alignment
(λ = 0) with the minimum curvature direction −q.

Algorithm 1 Setup

Input: ({V, E, T}, s ∈ (−1, 1), n ∈ �)
Output: (M , A)

Compute si at each vertex. � Eq. (11)
Pick arbitrary unit vector Xi at each vertex. � Sec. 2
Compute transport at edges ri j ← eιρi j . � Eq. (12)
Compute curvatures Ωi jk ← arg(ri j r jk rki). � Eq. (13)
Assemble M . � Eq. (17)
Assemble A. � Eq. (18)
A← A+ �M � Sec. 7

Algorithm 2 Smoothest Field (Sec. 6.1)

Input: (M ,A)
Output: u

LLT ← Cholesky(A)
u← UniformRand(−1, 1) ∈ �|V |
for i = 1 to nPowerIterations do

x ← BackSubstitute(LLT , Mu) � Eq. (15)
u← x/

�
x T M x

end for

Algorithm 3 Aligned Field (Sec. 6.1)

Input: (q,λt ∈ (−∞,λ0))
Output: u

LLT ← Cholesky(A−λt M)
x ← BackSubstitute(LLT , Mq) � Eq. (16)
u← x/

�
x T M x

7 Evaluation

To evaluate our algorithm, we compared it to the state-of-the-
art mixed integer method of Bommes et al. [2009]. We imple-
mented both algorithms in a common C++ framework, using
CoMISo [Bommes et al. 2012] for the mixed integer problem,
and CHOLMOD [Chen et al. 2009] for linear systems required
in our method. To avoid factorization issues in case A is rank
deficient we add a small multiple (� = 10−8) of M to A prior to
factorization; this shift does not change the eigenvectors. All tim-
ings were taken on the same 2.4GHz Intel Core 2 Duo machine.
For our eigenvector problem (Eq. (15)) we factorized A and ap-
plied a fixed number of power iterations (20 for all examples
shown in this paper). Note that since we need only the smallest
eigenvalue, we do not require a sophisticated eigensolver like
ARPACK, making our method particularly easy to implement. To
minimize alignment energy we performed factorization and a
single back-substitution. On a mesh of over 350k triangles, total
time for our method was 11s for smoothing, 7s for alignment;
the mixed integer method required more than three minutes for
smoothing and just under three minutes for alignment. Fig. 13
gives more detailed timing information; overall speedup was
approx. 19x on average.

To assess the quality of our results we compared fields produced
by both methods using the energy described in Eq. (1), i.e., the
same energy minimized by Bommes et al.Note that our method
produces smoother fields, even though we do not explicitly mini-
mize this energy – in these examples we minimize our Dirichlet
energy (s = 0), which is most similar to Eq. (1). For curvature-
aligned fields, we do not attempt a direct comparison of energies
due to the large number of parameters involved in the method of
Bommes et al.; we report only the number of singularities S and
the time t.
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Figure 13: Log-log plot of computation time for a variety of
common models. Dots and crosses correspond to smoothest and
curvature-aligned fields, respectively. Overall, we observe an aver-
age speedup of 19.3x relative to the method of Bommes et al.

Fig. 14 shows a rounded cube – here we achieve a lower energy
than the mixed integer method both when optimizing smoothness
(Dirichlet) and alignment. Even with no guidance field present
(top row), our method places the expected 8 singularities at cube
corners. A final set of examples is shown in Fig. 15. On these
more complex shapes the two methods find similar configurations
of singularities, yet we achieve our results in significantly shorter
time.

Robustness Inspired by [Bommes et al. 2009, Fig. 8], Fig. 16
shows the results of our curvature-aligned smoothing algorithm
applied to an extremely poor triangulation (left) of an object
with sharp features (here we use s = 0). Our method places
singularities in the expected locations; adding noise (middle) or
regularization (right) only slightly perturbs singularity locations
in otherwise flat regions.

Figure 14: A comparison of results on the rounded cube. Smoothest
fields (top row) and curvature aligned fields (bottom row) by
method. Optimization of Eq. (1) (left column) versus our Dirichlet
energy (right column). In each case the energy according to Eq. (1)
is reported.

Figure 15: Comparison of results using optimization of Eq. (1)
(top) with minimization of our Dirichlet energy (bottom). Note in
particular the difference in timings.

Figure 16: Our method is robust to ill-conditioned, noisy, and
over-regularized meshes.

8 Conclusion

We have presented a principled formulation of n-direction fields
on surfaces that naturally leads to efficient numerical algorithms.
Although we have focused primarily on automatic singularity
placement, our formulation provides a useful theory that can be
applied in a variety of applications, especially in light of well-
established connections with existing work (Sec. 4). These con-
nections open up a number of interesting avenues for future
investigation. For example, in some applications it is still de-
sirable to edit fields manually in order to accommodate other
(e.g.æsthetic) criteria. Editing could easily be achieved in our
framework via a dualized version of the trivial connections al-
gorithm of Crane et al. [2010]. One might also use holomor-
phic and/or anti-holomorphic n-vector fields as the basis for
surface parameterization, creating a direct path to quad meshing
(e.g., [Kälberer et al. 2007]). Different weighting schemes for
the magnitude of the field φ may also permit the incorporation
of other interesting criteria via the alignment term El .
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